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Abstract

This work briefly summarizes the current status of the V&V
Program at LLNL regarding goals, methods, timelines, and
issues for Verification and Validation (V&V) with
Uncertainty Quantification (UQ). Our goals are to evaluate
various V&V methods, to apply them to computational
simulation analyses, and integrate them into methods for
Quantitative Certification techniques for the nuclear
stockpile. Methods include qualitative and quantitative
V&V processes with numerical values for both (qualitative)
V&V Level, and (quantitative) validation statements with
confidence-bounded uncertainty bands. We describe the
critical nature of high quality analyses with quantified
V&YV, and the essential role of V&V and UQ at specified
Confidence levels in evaluating system certification status.
Only with quantitative validation statements can rational
tradeoffs of various scenarios be made.

INTRODUCTION

It has been said that V&V must address tradeoffs for a
“balance of sufficiency and efficiency” (Pilch, 2002), and
that V&V must acknowledge (and if we dare, quantify) the
point when “better has become the enemy of good enough”
as discussed in (Logan and Nitta, 2002). These tradeoffs
involve timing and funding for many issues including
compute platforms, code development, analyses, and
certification issues to be addressed. Part of the planning
process assessment of the V&V levels for various
certification capabilities. Examples of sensitivity studies,
which are part of the prioritization process, are provided.
There is a circular dilemma here because we wish to use
sensitivity studies to prioritize our V&V efforts, and yet the
sensitivity values are only as credible as the V&V we have
already done. V&V must therefore be viewed as an
evolutionary process in planning, quantification level, and
results,

Once we have a working balance of code development,
Software Quality, and V&V for specific applications,
models with Validation Statements (quantified confidence

bounds) of performance and safety margins for various
scenarios and issues are applied in assessments of
Quantified Reliability at Confidence (QRC). We summarize
with a brief description of how these V&V generated QRC
quantities fold into a Value-Engineering methodology for
evaluating investment strategies. V&V contributes directly
to the decision process for investment, through
quantification of uncertainties at confidence for margin and
reliability assessments.

V&YV PROCESS: QUALITATIVE & QUANTITATIVE
To work through the process that leads through V&V and
eventually to our investment strategy, it will be useful to
track our progress through the methods by referring to the
flow process in Figure 1. We break this complex diagram
into portions, and discuss each portion in turn.

From Requirements to V&V:

Before we proceed with the V&V process, we have to know
the requirements our product or system will have to meet,
and which of these our model is to address. After that,
depending on both the fiscal and scientific ability to perform
a certain level of V&V assessment, we proceed with various
degrees of qualitative and (ideally) quantitative validation.

Qualitative Validation:

Although we emphasize our preference for quantitative
V&V with numerical confidence bounds, we also recognize
the need for gualitative recognition of the V&V level for
particular simulation capabilities, for example in a “0-10
Meter” numbering system, based on a subset of 84 key
criteria identified for a V&V analysis process (Logan and
Nitta, 2002).
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Figure 1. Flow diagram from system Requirements through V&V, through uncertainty quantification and margins;
onward through QRC, then QSV (Quantitative System Value) for Value Engineering. The concepts (and acronyms)
are easier to grasp as addressed in the full text of (Logan and Nitta, 2002).

For Qualitative Validation, we suggest the use of such a 0-
10 rating scale; or for example the Validation Adequacy 0-5
scale from (Trucano et al, 2002). A slightly modified and
annotated version of the latter is presented here:

0/5=70.0": (Inadequate): No significant
comparisons with experimental data — and
therefore no measure of correspondence with any
such data. These are sometimes very preliminary
“what if” analyses. They can be useful as a guide
for the next set of analyses, but it is exceedingly
dangerous to base any design decisions on them.
1/5="0.2”: (Inadequate): Ad hoc comparison of
experiment “pictures” with prediction “pictures”
2/5="0.4": (Incomplete): Ad hoc (nonstatistical)
comparisons of experimental data (that may or may
not be statistically significant) or data traces
3/5="0.6": (Incomplete): Statistical comparison of
data and calculations that does not quantify
predictive capability of the model or correlation
over the parameter space of the database. The
degree of extrapolation (if any) may not be
quantified. The database may not be statistically
significant or fully relevant to the application. For
example, in Figure 2 below, the “database” is
reflected in the round data points on the graph.
Most of the experimental data falls between
[Exhaust] Flow Restriction of 3 and 4. There are
certainly enough data points [about 29] to be
statistically significant, but we note that all this

data was not measured at “standard conditions”,
e.g. the compression, temperature, etc under which
we plan to use the engine. If we take exhaust
restriction outside the range of 3 to 4, we are
“outside” the parameter space of the database,
and we are contending that our validation has
gone beyond “Level 3/5=0.6",

4/5="0.8": (Adequate): Predictive capability of the
model or correlation is quantified over the
parameter space of the database. The degree of
extrapolation is quantified. For example, in Figure
2, the solid lines of model prediction clearly go
outside the experimental database. We can obtain
the degree of extrapolation of exhaust flow
restriction directly from Figure 2, but the
extrapolation of other engine design quantities
firom the data is not obvious in Figure 2. There is a
statistically significant database that is fully
relevant to the application.

5/5="1.0": (Adequate): Predictive capability of the
model or correlation is quantified over the full
parameter space of the application. As implied in
Figure 2, the gpplication (Flow Restriction range
Jrom 0 to 5) may extend well beyond the parameter
space of the database (Flow Restriction about 3 to
4). There is a statistically significant database that
is fully relevant to the application. We can contend
that the analysis output shown below in Figure 2
meets this criteria; but that is not obvious from the
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limited information presented in that plot. Even so,
quantitative validation of the model is not a
statement that the model is adequate; it is only an
attempt to supply the information needed for an
adequacy assessment.

We suggest that as a first step in the introduction of formal
V&YV methods to the analysis documentation process, such
a rating system, e.g. “0-5”, or “0-10”, or even “2/5=0.4” be
used. An estimate of the V&V level of the work should be
stated in the text by the authors of the analysis report. One
might first think that authors would tend to be overly
optimistic — or pessimistic — in rating their own work. In
implementing this qualitative “V&V Level” process, we
concede that this does happen, but usually not by much
more than 1 level in 10. That is, if the author[s] rate their
analysis as “0.45”, internal reviews would not tend to rate
the same work lower than “0.30” or higher than “0.60”. We
feel that some such overall rating is a good first step to
quantitative V&V for two major reasons:

[a] Some type of overall rating is better than having an
upper-level management audience wonder if the work was
at “Level 0.10” or “Level 0.95”.

[b] The diligence of most analysts, having rated their own
work at say “Level 0.4”, will make them ask themselves,
“how could I make this work reach “Level 0.6, and would
that be worth the effort?” This will motivate analysis and
documentation to move from Qualitative Validation into
Quantitative Validation.

“Progress’="“"improvement’>
=]

= Tighter Confidence Bound,

as measwured on the same

validation statemerryr—
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Quantitative Validation:
For Validation to achieve a qualitative rating goal greater
than 4 of 10 or greater than 2 of 5 (see examples just above),
the work should include the simulations and analysis
necessary to generate a Quantitative Validation Statement
supporting the (annotated referring to Figure 2 for this
example) definition of Validation given by (Cafeo and
Roache, 2002):
‘Validated Model: A model that has confidence bounds
on the output (the middle solid line in the plot). A
validated model output has the following
characteristics:

1. The quantity of interest (Power Ouiput)

2. An estimate of the bias (i.e. confidence bounds
are not centered around the model output)

3. A set of confidence bounds (the outer solid
lines in the plot, drawn at an assessed
confidence level)

A validated model is one where we can support with
evidence a formal statement such as:

“I am 90% confident that if I build and measure the

quantity of interest, that it will fall within the

confidence bands (of uncertainty) shown around
the model output.”’

“fvo >
0.00 1.00 2.00 3.00 4.00 .00 8.00

Normalized Flow Restriction

Figure 2. An approach to measure and quantify progress in V&V (and to relate this to dollar value as described
below): Quantified measure of progress due to V&V — made possible via use of Quantitative Validation Statements --
can be converted to assessed Risk Reduction and Return On Investment. We stress that improvement lies not in what

we can skerch, but in what we can assess quantitatively.

Figure 2 shows a validation study example from a
design application of an internal combustion engine.
The plot shows typical output from a Quantitative
Validation process. The plot shows numerous small
dots of experimental data for this engine design,
obtained with various combinations of parameters such
as air intake flow, compression ratio for combustion,
exhaust flow restriction (the horizontal axis), and other
parameters, and the resulting power output of the
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various tested combinations (vertical axis). If our
intended application of the engine requires noise
suppression (exhaust flow restriction), we wish to know
how much restriction we can use and incur an
acceptable reduction in our decision quantity (power
output). We develop a model, providing the middle
solid line, as a model based answer to answer this
question. Quantitative Validation requires a quantitative
assessment of the confidence bounds on this model.

Page 3




This is determined by comparison to a known number
of data points (N) as shown in the plot. The model error
between the measured output and model output is
generally too small to be shown in the graph above, but
is used, along with experimental error, variability, and
assumed probability distribution functions (PDFs) to
construct a confidence bound (the outer solid lines in
Figure 2) on our analysis. Any adjustable (calibration)
parameters used in the model must be counted as model
degrees of freedom (K), so our effective number of data
points becomes (N-K). Fewer data points (N) or more
model adjustables (K) will result in wider confidence
bound lines in the plot. Model adjustables are a fact of
life; there is neither the time nor funds to avoid them
all. It is simply important to quantitatively account for
them in the validation assessment. This simple
discussion outlines one such method. A validated model
with a Quantitative Validation Statement for
performance analyses has the following features, as
depicted graphically in Figure 2 and discussed in
(Logan and Nitta, 2003):

e The Validation has a statistical nature, as in
“coin flipping” analyses, but in our case we
must account for the inevitable fact that each
“coin” [i.e. test] may be slightly different —
and there are often far fewer “coins” than we
wish,

e The Validation must provide uncertainty at a
stated [and quantified] statistical confidence

e The Validation must show the origins of its
data for comparison (the “coins”), and the
[perhaps expert judgment] weightings used
(are the coins the “same™)

e The Validation must allow us to assess a
Reliability measure from Margin and assumed
or known Probability Distribution Function,
normal distribution or other

e The Validation must provide the information
to address adequacy, before stating whether a
given model is “validated for its application”
or not

e The Validation must implicitly address the
balance of Sufficiency and Efficiency (Pilch,
2002)

V&YV and Quantified Reliability at Confidence, QRC
Given a model expressed with this Quantitative Validation
Statement and sufficiently quantified information about the
system requirements in its environments, we can then assess
measures of Quantified Reliability at Confidence (QRC).
An overly simplified way to show this using the example in
Figure 2 is as follows. If the required power level for our
application is “300”, and we deploy our design at Flow
Restriction of “3”, our model assessment is that Power will
be about “420”. Our Margin “M” of power can be expressed
as

M=420-300=120 (1]
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If we assume a Gaussian nature for the confidence bounded
uncertainties as shown, we can assess our uncertainty in
Power as the distance from the model assessed power output
(420) and the lower uncertainty bound, the lower solid line,
with a Power value of about “390”. (The many terms in the
uncertainty assessment is beyond the scope of this short
discourse). We then have Uncertainty “U”:

U=420-390=30 [2]

Our quantitative validation method requires that any such
“U” be evaluated at an assessed level of confidence. If we
meet this requirement and for the simple example here
assume a normal Gaussian distribution for the plot of Figure
2, we can then use the statistical quantity “Z” as

Ze=M/U)x,  =120/30=4 3]

Where Xs is the number “X” of Gaussian standard
deviations, leading to percent Confidence “C”.

The use of Z., taken directly from the statistical “Z”, has
several advantages. Most important is that it leads to
Quantified Reliability “R” at Confidence “C” (QRC). The
value of “R” in this simple example is simply the 1-tailed
area under the statistical “Z” curve up to the computed value
of Zy. from Equation [3]. The value of “C” is simply the
normalized fractional area under our assumed normal
distribution at the chosen confidence level Xs, for example
“68% Confidence using 1s”. It is vital that we remember
that QRC is not the “system reliability”. If our model were
perfect and the data used in the validation were plentiful
with complete relevance, such would be the case. Rather,
ORC is a measure of the reliability as our model is credible
to assess the quantity. An improvement (or decrement) in
ORC may represent a change in the physical system, or
simply a change in our model’s assessment credibility in
that assessment. When we assess QRC at the system level,
we can combine this with measures of Quantitative System
Value (QSV) and place these values on a Risk Diagram for
investment and decision inputs. The whole process therefore
lets us:

e Relate Margin "M” and Uncertainty “U" to
G‘R”.

e Demand that we associate "R" with a "C" - and
quantifies that "C" based on the specific
number of model and test data quantities used
for the validation

e Show how better assessments of M and U -
and increasing the “effective number of coin
flips ” N* - quantitatively tightens U, allowing
higher quantified C.

e Measure quantitatively our progress in charts
like Figure 2.

e Use the quantities in Figure 2 (QRC) as
decision inputs via the Risk Diagram in Figure
3.
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QRC and Benefit/Cost Ratio, BCR

After the Quantified Reliability at Confidence portion of the
analysis, we use these quantities in a model for quantifying
business decisions based on inputs from V&V and QRC,
with consideration of priority, timing, deployment, and
investment strategy. A Quantified Systems Value (QSV) is
defined as a function of Reliability and Confidence in terms
of Benefit (improvement in Value) and Benefit/Cost Ratios
(BCR). For a simple example, consider a product or event
with an assessed dollar value QSVO (see the horizontal axis
on the Risk Matrix in Figure 3). If the assessed value of the
product is proportional to its lower-bound model assessed
reliability (expressed as QRC), then the value assessment of
the product from our validated model is simply

QSV=QSVO0*QRC [4]

This simple example contains a number of assumptions, for
example that there is no undue penalty for the instances
(QRC<1) where the model assessment indicates the product
does not perform as required. The Benefit “B” of having the
product is then this QSV value (our product is assessed to
work). We can improve benefit “B” in at least 2 ways; either
by improving the physical product (and hence the next
assessed QRC), or by improving the model refining and
lowering uncertainty and hence also raising the assessed
QRC. The latter is important because it allows us to attach a
direct dollar benefit DB to the V&V process! Of course
either improving the physical product (tighter
manufacturing tolerances, etc.) or improving the model
(V&V, model or code improvements, etc.) will cost a dollar
amount “DC”. We can use a Benefit/Cost Ratio:

BCR = (DB-DC)/DC [5]

The BCR, computed here for product (or model)
improvement, gives us a quantity to help answer the
question, “was our product or model improvement process
worth the cost?” We link the V&V level for particular
simulation capabilities (including validation experiments) to
the value of products and product decisions made under
budget and schedule constraints. A concept of closure is
introduced in the form of a simple equation (shown in
Figure 1) that integrates UQ, QRC, and QSV quantities with
the economic function of Present Value Factor (PVy) in the
time domain. This equation enables quantification of
Benefit/Cost tradeoffs and timing decisions. Although there
is not a unique BCR, we should explore the bounds of its
values for any given decision and we show its relationship
to quantified V&V. These concepts are evaluated for
particular system requirements, which are in the general
case those environments that determine product
performance.

Key to the investment strategy process, and its linkage back
to V&YV, is the Benefit/Cost Ratio (BCR). Quantified V&V
shows us that there is not a unique BCR — we must explore
its bounds for any given decision. Due to the non-
uniqueness of any given BCR, it will become apparent that
our decisions fall into 3 basic bins:
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1. High BCR within our V&V bounds: Positive
decision indicator [i.e. “do it”]

2. Low BCR within our V&V bounds: Negative
decision indicator [i.e. “don’t do it”]

3. BCR varies high to low depending on V&V
bounds: more quantification is needed

CONCLUSIONS: QUANTIFIED VALUE OF V&V

The end product methodology and dollar benefit can be
explained using a Risk=Likelihood*Consequence Matrix.
“Risk” can also be quantified and viewed, as we will
illustrate, as the “Risk” due to inadequate or mistimed
V&V. The use of the BCR enables us to balance the benefits
of qualitative and quantitative V&V and timing in a
demonstrable way. It is obvious that too little V&V is
ingufficient, while too much V&V is ingfficient. The use of
a quantified Risk Matrix and the BCR method lets us show
how we can determine the level of V&V we feel is
appropriate. The evolution from V&V to Reliability at
Confidence to Risk is suggested as a tangible way to justify
the Dbenefits of investment in V&V.
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Figure 3. Dollar Benefit of V&V and Quantitative Certification, expressed as a standard
Risk=Likelihood*Consequence Matrix. The analogies are built step by step in the full text and in (Logan and
Nitta, 2002). Likelihood becomes analogous to assessed (1-QRC); Consequence is expressed in Value Enginecring

[ie dollars] terms.
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